Computing the Type Cone of Nestoedra

Computing the Type Cone of Nestohedra

Arnau Padrol¹, Vincent Pilaud² Germain Poullot¹

¹Sorbonne University

²CNRS & École polytechnique

ECG21, 5th of July 2021

Computing the Type Cone of Nestoedra

- Connectivity of graphs : tubes & tubings
 - Lattice of tubings
 - Examples
- Carr & Devadoss' construction
 - Normal fan
 - Nested fan and height function
- 3 Type cone of nestohedra
 - Idea of extremality
 - Computing the type cone

Tubes in Graphs

Définition (Tube)

A tube of a graph G is a connected proper induced sub-graph of G.

Compatibility of tubes

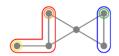
Two tubes t_1 and t_2 are *compatible* when they are :

 \overline{OR} nested (i.e. $t_1 \subsetneq t_2$ or $t_2 \subsetneq t_1$)

 $\overline{\mathsf{OR}}$ disjoint $(t_1 \cap t_2 = \emptyset)$ and non-adjacent $(t_1 \cup t_2 \text{ is not a tube})$

Définition (Tubing)

A *tubing* of a graph G is a set of pairwise compatible tubes.



$$(a \quad b) \quad ((c \quad d) \quad e)$$

$$(ab)((cd)e) \qquad \bullet \qquad \bullet \qquad \bullet$$

$$(a \quad b) \quad ((c \quad d) \quad e)$$

$$(ab)((cd)e) \qquad \bullet \qquad \bullet \qquad \bullet$$

$$(a \quad b) \quad ((c \quad d) \quad e)$$

$$(ab)((cd)e) \qquad \bullet \qquad \bullet \qquad \bullet$$

$$(a \quad b) \quad ((c \quad d) \quad e)$$

$$(ab)((cd)e) \qquad \bullet \qquad \bullet \qquad \bullet$$

$$(a \quad b) \quad ((c \quad d) \quad e)$$

$$(ab)((cd)e) \qquad \bullet \qquad \bullet \qquad \bullet$$

$$a \quad ((b \quad (c \quad d)) \quad e)$$

$$a((b(cd))e) \qquad \bullet \qquad \bullet \qquad \bullet$$

Bracketing on abcd, i.e. tubing on the graph

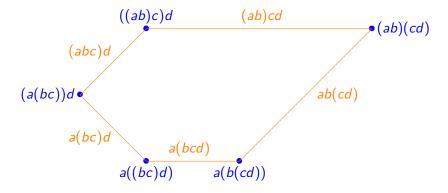
$$a((bc)d)$$
 $a(b(cd))$

Bracketing on abcd, i.e. tubing on the graph 1 2 3

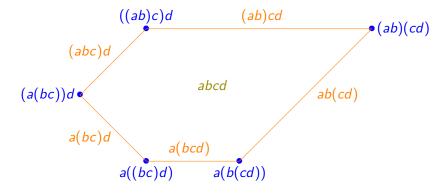
$$((ab)c)d \qquad (ab)cd \qquad (ab)(cd)$$

$$a((bc)d)$$
 $a(b(cd))$

Bracketing on *abcd*, i.e. tubing on the graph 1 2 3

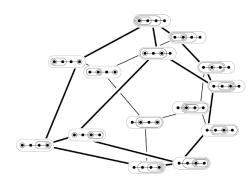


Bracketing on *abcd*, i.e. tubing on the graph 1 2 3



We can try to construct a polyhedron for a graph on 4 vertices, with :

- Vertices ↔ 3-tubings
- Edges ↔ 2-tubings
- ullet Faces \leftrightarrow 1-tubings
- Polyhedron \leftrightarrow 0-tubing

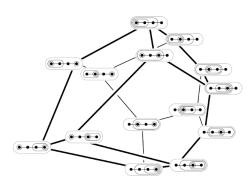


We can try to construct a polyhedron for a graph on 4 vertices, with :

- Vertices ↔ 3-tubings
- Edges ↔ 2-tubings
- Faces \leftrightarrow 1-tubings
- Polyhedron \leftrightarrow 0-tubing

It seems that the structure of lattice of tubings gives rise to a polytope.

Does it generalize?



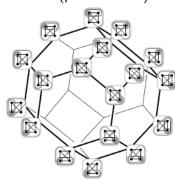
We can try to construct a polyhedron for a graph on 4 vertices, with :

- Vertices \leftrightarrow 3-tubings
- Edges ↔ 2-tubings
- ullet Faces \leftrightarrow 1-tubings
- Polyhedron \leftrightarrow 0-tubing

It seems that the structure of lattice of tubings gives rise to a polytope.

Does it generalize?

For K_n , tubings are ordered partitions (permutations).



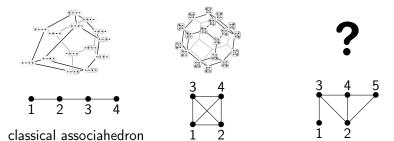
Graph associahedron

Définition (Graph associahedron)

For a graph G, a G-associahedron is a polytope which lattice of faces is the (reverse) lattice of tubings of G.

Our problem: Does it exist?

If yes how to construct it (explicitly)?



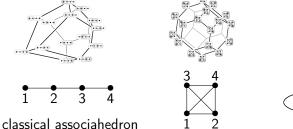
Nestohedron

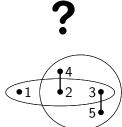
Définition (Nestohedron)

For an hypergraph H, an H-nestohedron is a polytope which lattice of faces is the (reverse) lattice of nested sets of H.

Our problem : Does it exist?

If yes how to construct it (explicitly)?





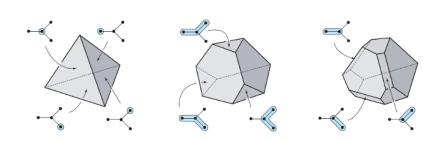
Computing the Type Cone of Nestoedra

- Connectivity of graphs: tubes & tubings
 - Lattice of tubings
 - Examples
- Carr & Devadoss' construction
 - Normal fan
 - Nested fan and height function
- Type cone of nestohedra
 - Idea of extremality
 - Computing the type cone

Facets truncations

Carr & Devadoss construction

For a graph G, the G-associahedron exists and we can find an explicit realization.

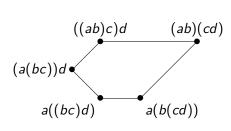


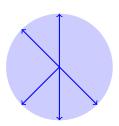
S. Devadoss

Définition (Normal fan)

For a polytope P and a face $F \subseteq P$, let C_F be the cone of all the directions maximized on F.

The *normal fan of P* is the fan formed by the cones C_F .

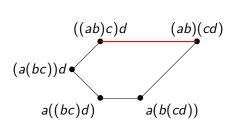


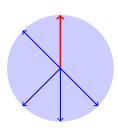


Définition (Normal fan)

For a polytope P and a face $F \subseteq P$, let C_F be the cone of all the directions maximized on F.

The *normal fan of P* is the fan formed by the cones C_F .

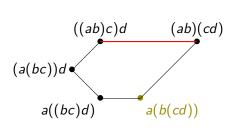


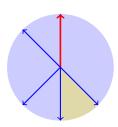


Définition (Normal fan)

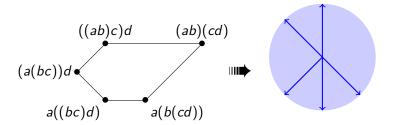
For a polytope P and a face $F \subseteq P$, let C_F be the cone of all the directions maximized on F.

The *normal fan of P* is the fan formed by the cones C_F .



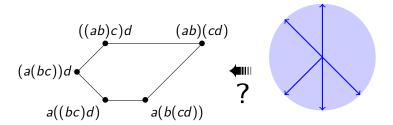


From a polytope, you get a normal fan.



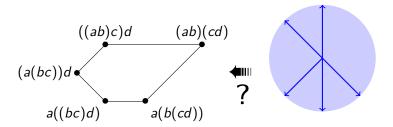
From a polytope, you get a normal fan.

From a fan, you can try to get a polytope (which normal fan is the chosen one).



From a polytope, you get a normal fan.

From a fan, you can try to get a polytope (which normal fan is the chosen one).



To do this, you need to prescribe *height* on each ray.

 $\begin{tabular}{ll} \textbf{Step 1}: Find a suitable fan that encode the lattice of tubings. \end{tabular}$

 $\begin{cases} \textbf{Step 1}: Find a suitable fan that encode the lattice of tubings. \end{cases}$

Step 2: Find suitable heights to get a polytope.

Step 1: Find a suitable fan that encode the lattice of tubings.

Step 2: Find suitable heights to get a polytope.

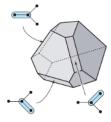
Nested fan

The normal vector associated to a tube t is $\mathbb{1}_t = \sum_{v \in t} e_v$. The normal fan \mathcal{F}_G is formed by the cones Cone $\{\mathbb{1}_t \; ; \; t \in T\}$ for all tubing T of G.

Height functions

Explicit height functions exist. Carr & Devadoss' height function is given by :

$$h_t = -3^{|t|-2}$$



Step 1: Find a suitable fan that encode the lattice of tubings.

Step 2: Find suitable heights to get a polytope.

Nested fan

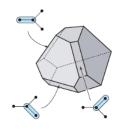
The normal vector associated to a tube t is $\mathbb{1}_t = \sum_{v \in t} e_v$. The normal fan \mathcal{F}_G is formed by the cones Cone $\{\mathbb{1}_t \; ; \; t \in T\}$ for all tubing T of G.

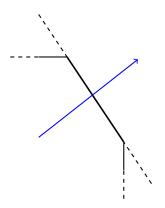
Height functions

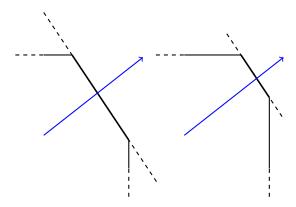
Explicit height functions exist:

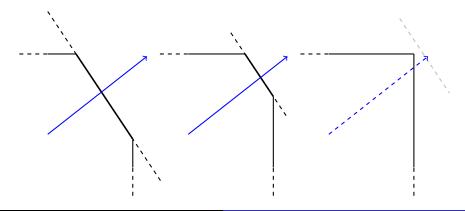
- Carr & Devadoss : $h_t = -3^{|t|-2}$
- Postnikov : $h_t = -|\{s : s \subseteq t\}|$

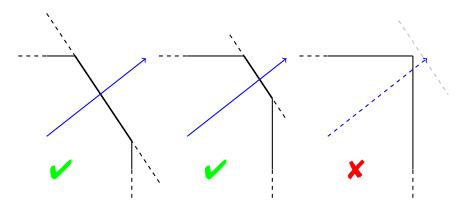
They can be adapted for hypergraphs.











Type cone

Définition (Type cone (McMullen-'73))

Let \mathcal{F} be a fan, with matrix of rays M.

For
$$\vec{h}$$
, one notes $P_{\vec{h}} = \{\vec{x} ; M\vec{x} \leq \vec{h}\}$.

The *type cone of* $\mathcal F$ is $\mathbb{TC}(\mathcal F) = \left\{ \vec h \; ; \; P_{\vec h} \; \text{has for fan } \mathcal F \right\}$.

Wall crossing inequalities are linear $\Rightarrow \mathbb{TC}(\mathcal{F})$ is a polyedral cone.

Our problem: For a graph G and its nested fan \mathcal{F}_G , what is the type cone $\mathbb{TC}(\mathcal{F}_G)$?

Computing the Type Cone of Nestoedra

- Connectivity of graphs: tubes & tubings
 - Lattice of tubings
 - Examples
- 2 Carr & Devadoss' construction
 - Normal fan
 - Nested fan and height function
- Type cone of nestohedra
 - Idea of extremality
 - Computing the type cone

Extremal wall crossing inequalities

Problem of extremality

Take this three inequalities:

$$a > c$$
 $b > c$ $a + b > 2c$

Knowing the first two, the third one is useless: it is redundant.

Among wall crossing inequalities, we are looking for non-redundant ones: extremal wall crossing inequalities.

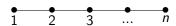
Computing extremal wall crossing inequalities will provide the *facet* description of the type cone $\mathbb{TC}(\mathcal{F}_G)$.

Example: associahedron of a path

Associahedron of a path

For $G = P_n$ the path on n vertices, there are $\binom{n+2}{4}$ wall crossing inequalities.

Only $\binom{n}{2}$ are extremal.



Extremal wall crossing inequalities of a path

A height vector $\vec{h} \in \mathbb{R}^{\mathcal{T}}$ is in $\mathbb{TC}(\mathcal{F}_{P_n})$ iff for $1 \leq i < j \leq n$:

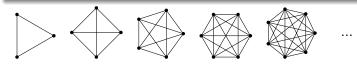
$$h_{[i,j-1]} + h_{[i+1,j]} > h_{[i,j]} + h_{[i+1,j-1]}$$

Example: associahedron of a complete graph

Associahedron of a complete graph

For $G = \mathcal{K}_n$ the complete graph on n vertices, there are $2^{n-2} \binom{n}{2}$ wall crossing inequalities.

All wall crossing inequalities are extremal.



Extremal wall crossing inequalities of a complete graph

A height vector $\vec{h} \in \mathbb{R}^{\mathcal{T}}$ is in $\mathbb{TC}(\mathcal{F}_{\mathcal{K}})$ iff it is a sub-modular function, i.e. for $R \subseteq [1, n]$ and $v, v' \notin R$:

$$h_{R \cup \{v\}} + h_{R \cup \{v'\}} > h_R + h_{R \cup \{v,v'\}}$$

Type cone of nestohedra

Type cone of a graph associahedron [Padrol-Pilaud-P.-'21+]

For a graph G, a height vector $\vec{h} \in \mathbb{R}^T$ is in $\mathbb{TC}(\mathcal{F}_G)$ iff for all $s \in \mathcal{T}$ and $v, v' \in s$ non-disconnecting s:

$$h_{s\setminus\{v\}} + h_{s\setminus\{v'\}} > h_s + h_{s\setminus\{v,v'\}}$$

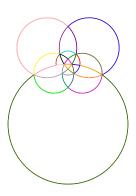
Type cone of a nestohedron [Padrol-Pilaud-P.-'21+]

In general, let H = (V, E) be an hypergraph. Then a height vector $\vec{h} \in \mathbb{R}^E$ is in $\mathbb{TC}(\mathcal{F}_H)$ iff for all $s \in E$ and $a, b \subsetneq s$ maximal in s:

$$h_a + h_b + \sum_{w \in \kappa(s \setminus (a \cup b))} h_w > h_s + \sum_{f \in \kappa(a \cap b)} h_f$$

where $\kappa(e)$ denote the connected components of e in V.

Thank you for your attention!
¡ Gracias por su atención!
Merci pour votre attention!



Bibliography

- [1] M. Carr and S. Devadoss, Coxeter complexes and graph-associahedra, *Topology and its Applications* Volume 153, number 12 (2006), 2155–2168.
- [2] P. McMullen, Representations of polytopes and polyhedral sets, *Geometriae Dedicata* **Volume 2** (1973), 83–99.
- [3] A. Padrol, Y. Palu, V. Pilaud and P.-G. Plamondon, Associahedra for finite type cluster algebras and minimal relations between g-vectors, preprint, 2019, arXiv:1906.06861.
- [4] A. Postnikov, Permutohedra, Associahedra, and Beyond, International Mathematics Research Notices Volume 2009, Issue 6 (2009), 1026–1106.